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Summary. To accommodate the number of holes and fractional number of atoms 
in doped high Tc superconductors, and to produce a periodic structure with given 
symmetry, we postulate a quadruple cell with four copper atoms on the CuO2 
layer. The quadruple cell structure has Dzh symmetry which can be distorted to C2h 
geometry under Big vibration. Such a structure allows the interconversion of 
different spin angular momenta into paired spins similar to Cooper pairs. It also 
provides vibronic interactions that lower the energy of the ground state. For 
electron (hole) pairing, we construct the running wave Bloch sums consisting of 
linear combination of bonding/antibonding geminals (instead of one-electron 
atomic orbitals) in these quadruple cells. For "bond" movement we construct the 
Bloch sums consisting of linear combination of"Covalon" waves in quadruple cells 
related to the movement of conjugate (alternating) bonds. In both cases the 
pair-wise charge (hole/electron) transfer is coupled with antisymmetric vibrations 
under a double-well potential related to Peierls distortion. The vibronic mixing of 
different running bonds with different antisymmetric vibrations at various distan- 
ces, accounts for the different long-range order of charge transfer. Our formulations 
represent an alternative view of BCS theory, Bisoliton theory and Resonanting 
Valence Bond theory by using a quantum chemical, position-space approach to 
a more tight binding situation. 

Key words: High To superconductivity - Molecular geminals - Charge transfer - 
Vibronic interaction - Renner-Teller effect - Jahn-Teller effect - Herzberg- 
Teller expansion 

1. Introduction: Non-stoichiometry and quadruple cell structure 
of superconducting cupratcs 

High Tc copper oxide superconductors involve compounds with complicated 
molecular structures [1-4]. The theory of Bardeen, Cooper and Schrieffer (BCS) 
I-5-9] has been successful in explaining a numbers of properties of low Tc supercon- 
ductors (such as the A3 B B-tungsten alloys). The BCS theory's general formulation 
in momentum space does not deal with the detailed non-stoichiometric molecular 
structure of the compounds which should be studied by quantum chemical 
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formuations in position space. Many standard numerical methods for calculation 
of electron-phonon interaction of the BCS theory are available and have been 
applied to the high Tc compounds [10, 11]. Detailed quantum mechanical studies 
of the chemical structure in position space of such doped inorganic complexes may 
lead to an understanding of the molecular structure, band structure, lattice poten- 
tials, hole density, bond valence sum etc. [12, 13], which may simply give the overt 
correlation of such phenomena as hole density versus To. These molecular studies 
may not necessarily reveal the fundamental, intrinsic principles of the dynamics 
and mechanisms for high-To superconductivity. Superconductivity also involves 
spin-pairing, attractive electron correlation through electron-phonon interaction, 
cooperative effects, long-range order, coherence and superconductivity gaps for the 
superconducting ground state etc. most of which were treated by the BCS theory. 
We intend to combine and consolidate the ideas from detailed quantum molecular 
studies of high Tc compounds in position space with the ideas of the momentum 
space in BCS theory and with the ideas of other theories such as Bisoliton theory 
and Resonanting Valence Bond Theory(RVB). The purpose is to postulate different 
new approaches for determining the dynamical mechanisms for high T~ supercon- 
ductivity. These involve mainly applying quantum mechanical symmetry principles 
to the molecular structure and dynamics of the high T~ compounds. Detailed 
numerical calculations will be performed in later works. 

A review [13] of the structure property correlation in cuprate superconductors 
shows that high T~ occurs at about 0.2 holes per CuO2 unit. This means one hole 
per five copper atoms. For the sake of symmetry in periodic structures of solids, we 
shall consider the case of one hole per about four copper atoms. To have two holes 
to simulate the Cooper pairs (of two electrons), we propose an idealized quadruple 
cluster cell structure with eight copper atoms (Fig. 1). For example if we start with 
a basic perovskite like structure (La4Cu2Os)4, after doping, in order to satisfy 
electrical neutrality, we may have the atomic charge arranged as follows: 
(La + a)l 5 (Sr + 2) (Cu + 2)8 (O- 2)31 (O -) 1" This amounts to non-stoichiometric fractions 
Lal.875 Sro.125CuO4 which is not inconsistent with the experimental superconduc- 
tor La2-xSrxCuO4 (x = 0.06-0.2). The O-ion (instead of the O = ion) is a symbolic 
designation of a hole within the CuO2 layer. In the quadruple cell with 32 oxygens, 
if we place the holes on the top or bottom CuO2 layer, then it will be the 
conducting layer with two holes per four copper atoms (Fig. 2). We shall use this 
structure to formulate the principles of high To superconductors and to visualize its 
relationship to low T~ superconductors. It is perhaps not a simple coincidence that 
such a quadruple cluster cell [14] with the right number of conducting 
holes/electrons can also be postulated for the hole superconductor, 123 compound 
(YBa2CuaO6.75)4 and the electron superconductor [15] (Nd+a)15(Ce+4)(Cu+2)6 
(Cu+1)2(O-2)31. 5 which amounts to Ndl.sTsCeo.125CuO3.9375 (com'parable to the 
experimentally proven superconductor Ndl.ssCe0.15CuO3.o3). In all of these 
cases, the quadruple cells help to resolve the fractional atomic ratios of non- 
stoichiometry to produce paired holes and electrons [14], and to yield a periodic 
series of quadruple cells with alternating short versus long bonds that will 
produce double-well potentials similar to those of intervalent (double) charge 
transfers. 

To visualize the pairing of holes (or electrons), we consider the molecular 
orbitals of the CuO2 lattice (Fig. 3) coming from the top layer of the quadruple cell 
(Fig. 1). Although the two symbolic O-holes may be on the Pn orbital of oxygen 
[16], the band structure studies 1-13, 17] generally fill up the lower Pn orbitals and 
assign the holes to the antibonding or* orbitals involving the 3dx:_y~ bands of 
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Fig. 1. The three postulated quadruple cells (YBa2CuaOT)a, (La2CuO4)8, (Nd2CuO4)s. The distribution 
of oxygen vacancies, O-  and mixed-valent Cu-ions will be visualized based on this. Drawings are 
schematic. Atoms on the symmetric (by reflection) lower part are omitted 

Co- C1 = C2 

C --'P'--'~-" C C ""~ 

Fig. 2. Qualitative illustration of the movement of two holes between four copper complexes, similar to 
the movement of two ~z electrons among two alternating nearest neighbor C-C bonds and the 
cooperation with "anti-symmetric" vibration. Although not explicitly shown, the bonding environments 
involving the holes around the Cu complexes should be different (and alternating). The two O-  (instead 
of O= which is drawn as O) is the symbolic representation of two antibonding holes, namely two fewer 
antibonding electrons in the antibonding ~r* orbitals consisted of oxygen sp hybrid and copper 3d~,2_:, 
4s, 4p=, 4py(dsp~). Since the ~* orbital is a linear combination of oxygen and copper orbitals the holes are 
also shared by oxygen and copper and may be transfered even to oxygen p, orbitals 
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Fig. 3a. The tetragonal arrangement of CuO2 plane. The D4h symmetry may be distorted to D2h 
through second-order Jahn-Teller effect, b The molecular orbitals of planar CuO2 lattice. The orbitals 
are designated by the irreducible representation of D2h symmetry. The B2, and Ba, are not degenerate 
unless the symmetry is Deh. The 24 molecular orbitals are formed from eight oxygen sp hybrid orbitals 
plus four oxygen p, orbitals plus four copper d~y = d~, orbitals plus eight (out of 16) copper dp 2 

tr orbitals. There are 16 electrons from the Cu-O cr bonds, plus eight lone pair d electrons on d~y = d, ,  
plus four lone d electrons on antibonding orbitals (for Cu + 2 3d 9) plus eight lone-pair electrons on the 
four oxygen p,  orbital o fO = (or two single electrons for the two O -  which is equal to two holes of Fig. 
2 in these two oxygen p,  orbitals. These holes may also be transferred to the dsp 2 antibonding a* 

orbitals, or mainly the d~=_r2 antibonding orbitals) 

copper (e.g. bands from the 5A*, 5B~u, 5B~u or 4B~'g antibonding a* molecular 
orbitals). Of course, molecular orbital considerations and the band structure 
studies are just some of the various artificial and approximate ways to interpret the 
truth of nature. This is because the (one-electron) molecular orbital does not 
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involve electron-electron correlation and electronic orbital and band theories do 
not involve the effect of molecular vibrations which is relevant and important when 
the movement of electrons (holes) affect the molecular structure. For example 
consider conjugate n bonds that may stay at one set of a bond locations (say the left 
side set) or at another set of neighboring a bond position (say the right side set). 
These two sets of (resonant) conjugate rt-electron structures are doubly degenerate. 
The contracting vibration (say at left-side set bonds) favors the presence of n-bonds 
(at the left-side set also) and lowers the energy to a minimum on this left-side set 
similar to Peierls distortion. But, in addition to this (one-side) Peierls distortion, 
the opposite contracting vibration (at right-side bonds) will favor the other set of 
conjugate n-bonds (at the right-side setting) and lower the energy to the other 
minimum which is of the same height as the previous minimum. This is the reason 
for the double-minimum double-well potential which we will emphasize for the 
movement of the conjugate n-electrons from left to right and vice versa. Therefore 
we will consider vibronic perturbation interaction that will involve the relevant 
antisymmetric vibration (that has opposite contraction/expansion between neigh- 
boring bonds) and configuration mixing (that improves electron correlation) due to 
this perturbation. 

So far we have just been asserting a molecular orbital picture and assuming 
delocalization of the electrons of the four copper atoms and oxygen atoms. The 
purpose is just to pay attention to the molecular electronic structure of a more tight 
binding "molecular" crystal in high Tc superconductor which is different from the 
nearly free electron (even with a modified reduced mass) of BCS theory for the 
atomic crystals. 

Existing theories appear to be more concentrated on the equilibrium ground- 
state structure. For example, because numerical band calculations give oxygen Pn 
bonds of lower energy, it is then assumed that the electrons will pile up and pair up 
at such lower levels. As a result the major holes will be at the antibonding a* 
orbitals consisted of oxygen sp hybrid and copper 3dx,-y2, 4s, 4px, 4py. Merely such 
equilibrium ground-state structure does not provide information as to how the 
other excited configurations arise due to vibronic interaction, what causes the 
difference of the spin multiplicity of the excited states and how the electric field 
perturbation affect the states during conductivity. Similarly, in the switch from 
ferromagnetic to antiferromagnetic spin waves, the artificial change in the approx- 
imate Heisenberg Hamiltonian [6] H = - 2 J ~ . S . ' S . + I  does not necessarily 
speak for the true dynamics or imply any basic mechanism. For example the 
change may involve the sign of the exchange integral J or alternatively the change 
may give rise to opposite (instead of identical) signs of the spins at even versus 
odd positions in H = - 2JY~.$2.'$2. + x where S~. = S~. + 2_~ S = - S~. + 1 in the 
equation of spin motion due to magnetic torque hdS2.+l/dt= -(g3o/h)  
($2n+1 x B2.+1) = 2 J S 2 . + 1  x (Sz .+I  + $2.). There is no dynamical mechanism 
given for the switch from parallel to antiparallel spins. Similarly, for Meissner 
effect of superconductors, even though there is London equation V= 1/2 2, 
B where the London penetration depth 2 determines the location of B = 0, 
yet there appears to be no clear molecular structural mechanism for the magnetic 
susceptibility ofz  = M/H = - 1 (or - 1/(4n)). Therefore, we like to consider some 
mechanistic aspects of spin multiplicity change aside from the simple pairing of 
spins as in BCS theory and we like to consider position space representation of 
molecular structural wavefunctions for the high Tc superconductors. 

In a tetragonal environment each of the 3d 9 configuration of Cu + z has one lone 
3dx2_y2 electron. In principle [18, 19] four Cu +z with four spins can have a total 
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spin angular momentum of S = 2, 1 and 0. A question may be asked about the 
mechanism of formation of the Cooper pairs apart from the energy lowering. For 
the four 3dx~-r~ lone electrons (or two lone electrons, if there are two holes), the 
change from parallel spin S = 2 (or S = 1) to antiparallel spin S = 0 may require 
a second-rank tensor operator to small spin-spin magnetic (dipole-dipole) interac- 
tion (or small first-order spin-orbit operator for AS = 1) 1-20, 21,1 which is totally 
symmetric in a given point group. From the view point of chemical structure, we 
ask under what point group symmetry of the superconducting lattice will be S = 2 
(or S = 1) and S = 0 structures have the same symmetry 1,22,1 and can be connected 
by these small interaction operators. 

In BCS theory [5, 91, the attractive electron correlation is due to the sec- 
ond order electron-phonon perturbation Hamiltonian H " =  1/2D2y.qkk, C~,+q 
Ck,C[-qCk(1/(Ek -- Ek-~ -- Wq) -- 1/(Ek, -- Ek'+~ + Wq)) = - V Y, kk'Ck,+qCk,Ck-q+ + 
Ck. Because of the neighboring product of electron creation (C +) and annihilation 
(C) operators of opposite momenta + k' and + k and because the total electron 
wavefunction in a Slater determinant ~0 = 1... (Pk¢-k "" ] also contains neighbor- 
ing product of one-electron orbitals of opposite momenta Ck and dp-k, the permu- 
tation of ~b_k to the front to be operated by the annihilation operator C-k will yield 
a sign change for the total wavefunction that is different from the sign change of the 
later permutation of the neighboring Ck to the front to be operated by Ck. The 
overall change in the sign of the total wavefunction will be cancelled by the 
subsequent similar sign change due to the creation of two neighboring one-electron 
wavefunctions •k' and dt~- k' by C~ and C+-k ,. Therefore, in the electron-phonon 
scattering only when two electrons of opposite momenta ( k , -  k) are simulta- 
neously annihilated and two electron of (a different set) of opposite momenta 
(k', - k') are simultaneously created will the (transition) matrix element of (H")  
maintain a negative value for gap lowering of energy. The electron pair (k and - k) 
must have opposite spins so that there will be no "exchange" integral that yields 
a negative sign and a positive (H")  matrix element. This is similar to the spin- 
paired two-electron chemical bond situation. And the change of k to k' is similar 
to the change of bonding electron orbital due to configuration mixing. That is 
why we want to explore the bonding structure of high To superconductor in 
a chemists' view of position space instead of momentum space. Since the electrons 
with opposite momentum will have higher probability density, we should study 
how well can the momentum space treatment of low Tc superconductors be 
replaced by a position space description of paired electrons in high Tc supercon- 
ductors. 

The above second-order electron-phonon perturbation Hamiltonian H" results 
from the first-order Hamiltonian H ' =  i~DqC~+qCk(aq-  a+-q) which contains 
phonon creation (a+_~) and annihilation (aq) operators and which resembles the 
Herzberg-Teller expansion of first-order vibronic interaction (OH/OQ)Q. That is 
why we also will translate the electron-phonon interaction into a vibronic inter- 
action related to Jahn-Teller effect 1,23, 24,1 in position space and ask how it will 
lower the energy to yield the superconducting gap which we relate to the splitting 
of degenerate vibronic levels in a double-well potential. 

Our Jahn-Teller splitting is related to the degenerate perturbation with first- 
order resonance integral between two degenerate vibronic states as 

1 8 2 H  2 1 2 i o 
"~(~tA(1,2)z°(QA)ZI(Q-A) a-~_AQ-A tP-a( ,  )Z (QA)Z (QA)). 
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This is different from an example of the detailed second-order perturbation of BCS 
theory such as 

' 1 ) 
2 " " \Ek  - -  W ~ .  - -  E k _ ; .  - -  E-k  + w;. -- E-k+;. ' 

where the D2/AE may be compared with our quantum chemical view of sec- 
ond-order perturbation energy 

E (2) = 

" ( Q - ; ' ) 8 : - - ~  QzQ-x  ~)k(1)C~-k(2)z°(Q:.)z°(Q-:.)) (9k_;,(1)(a_k+;.(2)Z1 (Q;,)Z ~ ;2H_ ; 2 

AE 

But the q~(i) with i = 1, 2 of BCS theory are one-electron wavefunctions which 
differ from our two-electron geminals O+A (1, 2). Our use of Herzberg-Teller 
expansion 

H = Ho(reQ °) + Q:" + ~ "OQ;O--Q:, + "" 

and our use of the two-electron geminal approach of degenerate perturbation is 
also different from Bipolaron theory [25-27]. We choose to visualize the Hamil- 
tonian of Bipolaron as follows 

~ (  2r~A'x + 
H =  ct + 2fl c o s - - ~ - ) b A  ba + ~ ho):.a; a;. 

+ EE (': + 26~ c°s2-2~:-) x / h A  :., . ~,...~,(a:. + + az) b~ bA 

= 2aAbXbA + 2hcoxa;a; .  + + 2~D; . (a~ .  + a;.)b~bA, 
A ;,~ A ). 

where b + and b stand for electronic and a + and a for vibrational creation and 
annihilation operators. 

= ( (~. lHol¢.) ;  fl = <¢.+xlHol¢.);  

~, = (~).](~H/OQ:.)oI~).); 62 = (~).±ll(~H/aQa)olC~,), 

(h/(2mo~)) ~/2 = (z°(Qa)IQ~.Iz~(Q:.)> = (z~(Q:.)IQ~Iz°(Q:.)>. 

The linear combination of the ~b. at local states will have the wavefunction 

1 N - 1  

~A -- x~ ~ a~=oexp(2rdAn/N)cb, • 

The ~b. further stands for the linear combination of two local ions that attracted 
two electrons (bipolaron). Hence b~ + + = Ca~ CA p and bA = CA p CA ~ where c + and 
c stand for one-electron creation and annihilation operators. Bipolaron 
theory deals with local ionic site n interacting with nearest-neighbor ions at n + 1 
which have equivalent but displaced oscillators. Yet, such treatment appears 
to have not emphasized the zero momentum we choose (e.g A -  A - - 0  in 
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~(1, 2 )=  ~//A(1, 2)zI(Q-A))  and is different from the two-electron geminat quasi- 
particle Boson state. We consider for the antisymmetrized (A) complete state 
~(123456...) = AW(1, 2)~(3, 4)~(5, 6) .... Upon diagonalization by canonical 
transformation with 

+ D,~ + 
S = 2 b A  b A Z ~ ( a ; .  -- a:.), 

A 3. ). 

the Bipolaron Hamiltonian is 
+ 2 

= eSH e - s  = ~_fiAb~ bA + ~ hoo~aZ a:. - S" ba.bAD~ = HO _ H(2)" 
A A ~ h(_o:. 

This again is similar to BCS theory to have a second-order perturbation He2) which 
also does not have our first-order degenerate perturbation (Renner-Teller). 

We will study how vibronic interactions will be related to movement of a pair of 
electrons as Bosons. We also look for the origin of the long range-order and for the 
structure that contributes to high T~. We shall depart from existing numerical 
band calculations approach without correlations and without vibronic interac- 
tions. We shall also depart from existing BCS mathematical approach in mo- 
mentum space to go into a quantum chemical approach in position space in order 
to understand the structure and bonding principles. Although the approach may 
not be perfect, it at least offers an alternative based on the fundamental principles 
for a different superconductor theory of high T¢. 

2. Spin pairing and vibronic interaction in high Tc cuprates 

In Fig. 3a, the quadruple C u O  2 lattice with four Cu + + atoms can in principle have 
D4h tetragonal symmetry. But, because the superconductor is of orthorhombic 
symmetry (for example the 1, 2, 3 cuprate [28]) and because of the presence of holes 
we have adopted the subgroup D2h symmetry. We use this symmetry to designate 
the molecular orbitals. It is different from the D4h symmetry of one set of copper 
oxide (e.g. La2-xSrxCuO4) local structure [26,27]. If we assume the energy 
dictates the distribution of electrons to the lowest level, then the configuration for 
the lAg ground state will be (4B3u) 2 (5A*)2 (6A ~-)2 [5B~u)o or (5B~u) ° ] with the "two 
holes" on the dx,-y,  orbitals (the a* antibonding molecular orbitals 5B~u or 5B~, 
that have the mixing with the oxygen sp hybrid orbitals). The next higher config- 
uration will have two holes on the 5Ag oxygen P~x orbitals (which interacts with 
the dx r orbital) and will have the configuration (4B3~)2(5Ag)°(6A'~)2[(5B'~u) 2 or 
(5B~,)2]. The repulsive electron correlation ( + e2/rij) will require the mixing of all 
of these possible configurations of the same symmetry. Therefore, the holes or 
electrons in the bonds formed by these molecular orbitals will spread over the four 
CuO2 in the quadruple cell layer. Such spreading turns out to be quite justifiable in 
high Tc cuprate superconductors, because the copper 3d orbital and oxygen 2p 
orbital have quite close valence orbital ionization potentials (14.0eV versus 
14.8 eV) and the holes/electrons see almost no potential barrier in their movement. 
But if they are spread out, the question is how will they pair up with opposite spins 
when they move from one quadruple CuO2 lattice to a neighboring lattice in 
superconduction. In fact, if one is to consider the magnetic structure, the four lone 
3d~,_y~ electrons in four copper atom are conventionally considered to be localized 
and no special mechanism is given for them to change from parallel to antiparallel 
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in the spin wave treatment. On the other hand, if there is Q(Blg) vibration which 
correlates to the Ag symmetry of C2h subgroup, then it will involve the descent 
from the higher symmetry D2h structure to the C2h structure. In the latter, both the 
S = 2 and S = 1, can have the same A s symmetry as S = 0, this is illustrated in the 
Table 1 [22, 23]. 

This geometrical transformation and descent in symmetry can be achieved by 
the Big vibration of D2h (from Eu in D4h). Note that among the subgroups of D4h 
and D2h only in C2h, not in C2v, can all S = 2, 1 and 0 have the common A s 
symmetry and can commingle and interconvert via the spin-spin and spin-orbit 
interactions that have A s symmetry. If, during the onset of superconductivity, the 
Big vibration is activated, which reduces the distorted structure to C2h symmetry, 
then the conversion to S = 0 Boson-state should be no problem from the micro- 
scopic point of view for a quadruple planar cell. This Q(B~s ) vibration can be 
included by analogy with the two-cell. This Q(BIs ) vibration can be induced by 
analogy with the two-electron scattering through electron-phonon interaction of 
the BCS theory. For example we can take the configuration interaction with 
a doubly excited-state ~B~g = 5B2u5B3u coming from the excitation of (6A*) 2. 
This ~B~g state will stabilize or lower the energy of the ground A s state by the 
second-order Jahn-Teller effect, 

/1B 1 B [ OH [ ~ 2 E '2' 1,z  Q(B s) XAs:(B,s) / 
= E(~lg) - E('B,g) -- Eq(Blg ) < 0. (1) 

If the excitation is from the oxygen (5Ag) 2, then this vibronic mixing will create 
probability for two holes on the in-plane p= orbital of oxygen which may bc the Px 
orbital not pointing at copper. The excitation can also come from the Cu-O 
a bonding orbital (2As) 2. In that case the two holes will be essentially on the sp 
hybrid bond of oxygen. 

In case of no holes there are four single 3dx2_y~ electrons of four copper atoms 
which can be in the configuration of(6A*)Z(SB*.)(5B~u) of Dzh symmetry. In case of 
four small polaron situation the four unpaired electrons will be localized in the four 
polarized copper atom position. It is still different from the four unpaired electron 
in the four different configuration * * * * (6Ag)(5B2u)(5B3u)(4Bls). 

In this way the attractive (energy lowering) "electron correlation" due to 
vibronic interaction also affects the electrons or holes in the CuO2 quadruple cell in 
the same way as the repulsive (e2/rij) electron correlation. And, because of the 
singlet ground state, the vibronic interaction, which is spin-independent, requires 
all of the mixing excited states to be singlets (S = 0 with antiparallel spins) sim- 
ilar to the singlet Bosons of Cooper pairs. The B~g vibration coming from the 
cooperative vibration of four (neighboring) CuO4 (D4h) structures are shown 
in Fig. 4. 

Table 1 

S = 2  S = I  S=O 

D4h A t g + B  1 + B  2 +Eg A2g+Eg Als 
D2h 2A s + BI s + B :  + B. Bls + B2s + Bss A s 
C2v 2A1 + A2s+ B1 ~k B 2 -~s A2 + Bl + B2 A1 
C2h 3As + 2B s A s + 2B s A s 
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Fig. 4. Schematic representation of the cooperative vibration of four planar MX4 molecules, each of 
D4h symmetry. We take only in plane vibrations and only those combinations that will descend into (or 
contain) Big of D2h symmetry for (MX,,),, and will subsequently descend into Ag of C2h symmetry for 
(MX4.)4 and will subsequently descend int Ag of C2h symmetry for (MX4),,. There are four linear 
combination for each vibration of MX4 (D~.h), counting the MX,~ unit clockwise, the linear combination 
for vl(Alg) is 1 -- 2 + 3 -- 4. This combination yields two sets of different sites, but does not involve 
small between-chain movement of the bridge oxygen. The linear combination for v2(B2g) is 
1 + 2 + 3 + 4. The linear combination for v4(B~g) is 1 - 2 + 3 - 4. This latter does not create different 
sites. The linear combination for v6(E,) is 1 -  2 -  3 + 4. The linear combination for vT(Eu) is 
- 1 - 2 + 3 + 4. The last two combinations are not irreducible representations of D2~, but contain Big 

(and Ag). The cancelling opposite vibrations are omitted. The reinforcing coincident vibrations are indicated 
by larger arrows. The out-of-plane Btg (D2h) vibrations are for the apical oxygens of (YBa2Cu306ns), 

Our second-order vibronic treatment is different from Johnson et al.'s [29, 30] 
Jahn-Teller splitting of the degenerates eg of D4h symmetry (into b2g and b3g ) of the 
oxygen-oxygen O (pz~z)-O (PW0 bonding in one set of copper oxide. Suchfirst-order 
vibronic interaction will lead to the combinational pairing of the two separate 
electrons in e~ (presumably from the triplet N2g of of e~ configuration to the singlet 
1Alg of bZgb°g or b°gb~g). One of the Jahn-Teller vibration, big or b2g of D4h 
symmetry (depending on the assignment of the D~h principle axis, C~ or Ci') will 
distort and discent the D4~ symmetry to D2h (Ag) symmetry. 

But in any case these vibronic interactions are still limited to the local struc- 
tures. That is why in the next section we want to consider the movement of the 
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holes/electrons from one local structure to another neighboring structure due to 
the vibronic interaction of a (linear) crystal structure with (double-degeneracy due 
to) cyclic boundary condition and with double-well potential. It is a Jahn-Teller 
first-order interaction due to the (anti-symmetric) normal mode of crystal (phonon) 
vibration. Because the movement of holes/electrons cooperates with such anti- 
symmetric vibration, therefore the conductivity will not be resisted by the vibration. 

Furthermore because of the pairing of electrons, that is why we propose the 
structure of two electrons/holes molecular 9eminal orbitals to replace the conven- 
tional (one-electron) molecular orbitals. In addition we also consider the val- 
ence-bond treatment by proposing two-electron "Covalons" in crystals. 

3. Pairwise charge transfer and double well potential of 
two-electron/hole geminals 

While the Bag vibration will lower the energy of the ground state and will provide 
the mechanism for conversion of spin states into pairing singlets within the 
quadruple cell, it determines nothing about the movement of the paired electron 
holes away from this quadruple cell and about the long-range order and coherence 
of superconductors. The movement of the paired electron/holes will also be 
facilitated by the equal energy of the Cu(3d) and O(2p) orbitals. But, for a hole 
conductor we must start with finding where the holes are located, which implies 
a place with fewer a* anti-bonding electrons between d~2_y2 of Cu (and the sp 
hybrid of oxygen). Therefore, it means shorter CuO bond distances in the CuO2 
quadruple cell compared with the neighboring cell. The symbolic nature of the 
alternative short-long bonds between nearest neighbors are similar to the alternat- 
ing double-single bonds in conjugated hydrocarbons [,-31] or in the low Tc super- 
conductor AaB. This superconductor with chain integrity of A, for example 
A = Nb, has alternating triple-double bonds [-32]. Such movement of bonding 
electrons (or antibonding holes) from ~L -- ~R = Q- < 0 for a shorter bond length 
at left (~e) to a neighboring longer bond length at right (~R) will alter the bond 
length difference that becomes ~ L -  ~R = Q - >  0. The movement amounts to 
a double well potential as a function of Q_ (Fig. 5), an anti-symmetric vibration. 
Such a double-well potential should also be present when a bonding Cooper 
electron pair moves from one inter-atomic region to another. 

The alternating double bond in Fig. 5 which we use to imitate the contrac- 
ted/expanded quadruple cells, may be considered to have come from the instan- 
taneous potential well due to antisymmetric vibrations cooperating with electron 
redistribution. In the limited case of two sets of bonds with three atoms Co-Ca =C2 
one at the left ~bL (Co=C1-C2) and one at the right ~bR (Co-C1 =C2) (Fig. 5), the 
wavefunction can be represented as a linear combination of these bonds as follows: 

1 1 
*a = --]--~.~=o exp(2rtiAn/2).(a., 

1 1 
= + < 1  = + = 

1 1 
~i = 7 ( ( ~ O  -- ~ba) = -~(CbL -- d, aR) = O-,  (2) 

where ~bo, qSL stand for C = C - C  and 4hi, ~bR stand for C-C =C. 
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Co=CI-C2 ~ Co-C~=C2 

I , I o. 
"Q" "Qo 0 Qo 

CR 

Fig. 5. The double oscillator model for the cooperation between an antisymmetry vibration and bond 
movement. 

Q = r2n,  2 n + l  - -  r 2 n + l , 2 n + 2  = ~L - -  ~R = Q -  

The double well potential barrier is related to the superconductivity gap. This is because at the top of the 
barrier with no vibration (Q_ = 0) there is no electron/hole pairing under ( + Q_) anti-symmetric 
vibration. The second-order energy barrier 

OH 2 2 

is comparable to Bipolaron theory's gap 

The ant isymmetr ic  vibrat ion can also be obtained as linear combinat ion  of  left 
bond  (~L) and right bond  (~R) vibrations with A = 1 

1 l 
Q1 = ~ , ~ o  exp(2rdn/2)" ~,, 

= - - e _  (~o  - ¢1)  = (~L - & )  = Q - ,  (3) 

where ~L = G0 = ql -- qo and ~R = (1 = q2 - -  ql and qi is the mot ion  of a tom i in 
Co ~ C1 ~ C2 4 .  By symmetry  selection rule we can mix the wavefunctions with 
different electronic A's by vibronic perturbat ion of appropriate  vibrational A as 
follows (AA = 1) 

0 = 0o + a1~1 = ~ + z ° ( Q - )  + a~O-, 

(O-xI(Q-)~Q Q-lO+z°(Q-) I 
al = - zI(Q_) .  (4) 

E+ - E_ - EQ 

In the limiting case the vibronic mixing may give 1/x/~(O ÷ + ~_)  = ~bL that  leaves 

the bonding  electrons at left or  may give 1/x/~(O+ - ~_)  = ~b R that leaves the 
bonding  electrons at right. Because the left and right bonds are doubly degenerate, 
similar to Peierls distortion, the anti-symmetric vibration will lower one and raise 
the other. We want  to emphasize not  just vibration but the positive versus negative 
vibration, _ Q_. The former (positive vibration ~ Co Ct --, ~ C2) favors and 
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lowers the right side bond energy (Co-C1=C2) and the latter (negative vibration 
Co --* ~ C1 C2 --* ) favors and lowers the left side bond energy (Co=C1-Cz). The 
result is the double-minimum, double-well potential (Fig. 5). 

This will paraphrase the antisymmetric vibration of neighboring quadruple 
CuOz cells (Fig. 2). In Fig. (2) the presence of two O-(instead of O = which is simply 
drawn as O) is the symbolic representation of the presence of two antibonding 
holes in the quadruple cell, i.e. two less electrons in the a* antibonding orbitals 
between the oxygen sp hybrid orbitals and the copper 3dx2-,2, 4s, 4px, 4py (dsp 2) 
orbitals. For four Cu ÷ ÷(3d 9) there are usually four antibonding electrons in the 
antibonding orbitals (for example (6A*)2(5B~u)2). In this case the Cu-O bonds will 
be longer and looser because of more antibonding. But when two antibonding 
electrons are gone (namely when there are only two, instead of four antibonding 
electrons, for example (6A*)Z(5B~u)°). This means the presence of two antibonding 
holes. In this case the Cu-O bonds will be shorter and firmer because of less 
antibonding. Therefore, the contraction (to shorter bonds) invites the antibonding 
holes to move in and extension (to long bonds) pushes the antibonding holes away. 
This is also because shorter bonds make the antibonding orbital energy higher and 
disfavor the presence of antibondin9 electrons with high energy but favors the presence 
of antibondin 9 holes and vice versa for the longer bonds. To generalize this to 
a solid-state system with N quadruple cells we take ¢,(1, 2) to be the two elec- 
tron/two-hole antibonding/bonding geminal orbital of the nth cell and 4, to be 
the contraction/expansion breathing-type vibration of the nth quadruple cell 
(Figs. 2 and 4), and construct Bloch sum linear combination as follows: 

1 N - 1  1 N - 1  
OA(1, 2) = ~ ~ exp(2rdAn/N).¢,(1, 2) = ~ ~ exp(ikna)'(p.(1, 2), (5a) 

x /N n=o ,/N n=0 

1 N - 1  1 N--I 
- -  QA= ~ .  exp(27;iAn/N)'~, exp(ikna)'~., (55) 

where hk is the crystal momentum related to the quasi-angular momentum 
hA = (R x P)z as follows: 

2rthA 2n(R x P)~ 
h k -  Na 2nR - P" (6) 

The movement of two antibonding holes is related (though opposite) to the 
movement of two antibonding (say (5B~u) 2) electrons. For the latter case we can 
represent the two-electron 9eminal orbital as follows 

1 ~n ~n 
¢,(12) = ~ 5Bzu (1)5Bzu(2)(~lfl2 - fllaz). 

We consider the superconducting vibronic two-electron geminal ground state as 
follows: 

(OAT~I(Q-A) O&Q-a_ OoZ°(Q-A) I 
~)'(1, 2) = 0 0 ( 1 ,  2) q'- E eo __ EA EQA 0 A(I' 2)zI(Q-A)" 

A 

(7a) 
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and 

In the limiting case, the interaction of 

1 
~ko(1, 2) = 0o = ~_(~bo  + q51 + 4)2 - ~ba + 

,/N 
. . . )  

1 
¢N/2(1, 2 ) =  ~kN/2 = ~ ( q ~ 0  --q~l + ~b2 - ~b3 + "") 

is due to the nearest-neighbor antisymmetric vibration 

1 
= - + - + ""), 

which favors the motion of the geminals in the limit at 

"4- ~1N/2) = - " ~ l l p  "F 02 "F ~)4 + "") 

to 

(7b) 

~ (Oo - = , ~ ( q 5 1  + 4)3 + q55 + ...). (7c) 

Different vibrations and different interaction will give different long-range 
order of movement and different coherence length, In addition if we consider two 
sets of vibronic interaction, we can start with the first set of degenerate vibronic 
states CA(l, 2)7~l(Q-A) and 0-A(1, 2) X 1 (QA) which will be splitted by first-order 
special Renner-Teller effect (the second instead of the first Herzberg-Teller expan- 
sion) as follows: 

l l t ~ A ( I , 2 ) z I ( Q _ A ) ~ Q 2 -  A O-A(1,2)zI(QA)). (7d) 

This two-electron geminal state with vibronic perturbation mixing is a quasi- 
particle that resembles Cooper pair state with electron-phonon interaction. But, 
instead of two electrons with opposite k's, we choose a (two-electron) geminal with 
zero k (and zero A) or zero momentum. This will also satisfy the London equation 
[33, 34] of j  = - ne(P + e/cA)/m = - (ne2/mc)A = - c/(4rc22)A. Our approach 
for the high T~ superconductor is closer to the tight-binding treatment (with local 
charges and local bonds) in solids. It is meant to be different from the conventional 
treatment of low T~ superconductor. The conventional treatment uses almost 
"free" electrons moving in uniformly smeared charge environment of solids. The 
corresponding total wavefunction for many (say N/2) electron pairs will result from 
antisymmetrization (N! permutation P# with, antisymmetry sign 6,) and correc- 
tion for the redundancy of N/2 two-electron Boson states. 

/ / N \  \-1/2 N~ 
~(1,2,  . . . ,N)={(2,)N/2~-EJ,N[ ~ ~. 6,Pu~lu(1, 2)7J(3, 4) . . .  ~U(N-1 ,  N). 

\ \ ~ /  / It=I 
(8) 

For the movement of paired holes or electrons over periodic structure we shall 
consider the similar movement of bonds as paired electrons in electron conductiv- 
ity. In order to compare with physicists' Bisoliton theory [35, 36] and resonanting 
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valence bond theory of superconductivity, we shall formulate the running wave of 
valence bonds with (linear or quasi-angular) momentum to be related to the wave 
vector. In particular, we shall consider the movement of a pair of excited perturbed 
(e.g. due to external applied electric field) electrons in a "Covalon" picture [31, 32] 
which we proposed in 1976 to stand for the cooperative pairwise charge transfer of 
"neighboring" covalent bonds interacting cooperatively with the antisymmetric 
vibration which creates double-well potential. The perturbed pair is taken to be at 
the place where two double bonds are crowded around one atom (with *) (Fig, 6). 
The exciton-like "Covalon" [31, 32] wavefunction is elaborated exactly in detail as 
follows for a system with 2N + 3 atoms and 2N + 4 electrons. Again we use 
conjugate carbon n-electron bonds to imitate the alternating contracted/expanded 
bonds of quadruple cells. The linear combination is similar to the Bloch sum 
(for excitons, etc.): 

t ~  1 e 2~iA(2n) ~'*(2n) 
t P A ( r l r  2 " "  r2N+4 ) = A 

~ . = a  2 N  + 3 

+ y" e ~u*(2n + 1) + 3, (9a) 
,=o 2N + 3 

where 
n - 2  N + I  

~*(2n) = ~*(2n) [-I ~(2k + 1,2k + 2) ~I ~(2m,2m + 1), 
k = 0  m = n + l  

n - 1  N 

~u*(2n+ 1)---~*(2n+ 1) I-I ~ ( 2 k , 2 k + l )  1~ ~(2m+ 1,2m+2),  
k = O  m = n + l  

+ 

2 4 ~ z 1 

~2" N N z 

~2*n 
2 4 ~ 1 

1 3 
E 

2 4 ~5 ~ z 1 

¢'4 
+ 

1 3 
+ d~2*n + 1 

Fig. 6. Movement of a pair of excited (*) electrons (arc bond) along a conjugate linear system. Cyclic 
boundary condition is adopted 
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and where 
(2N+ 4)! 

A = (4!(2!)U(2N + 4)[) -1/2 ~ 6 . P  u (9b) 
#=1  

and the two bonding n-electrons are 

• (2k,2k + 1) = 1/2[qbzk(2k + 1)qb2~+l(2k + 2) + qSz~(2k + 2)~b2k+a(2k + 1)] 

X ( 0 ~ 2 k + l f l 2 k +  2 - -  f12k+10~2k+2)  

and the two excited n-bonds are 

(9c) 

~P*(p) = (4!) -1/2 ~ 6~P~c/)v_ l ~bvc/)* e/)p+ l (~fl~x fl + fl~fl~ - aflflcz - f l~ f l ) .  
v = l  

(9d) 

A is the quasi-angular momentum if we use cyclic boundary conditions for 
connecting the two ends of the chain. In this cyclic case the No. 2N + 4 atom is the 
same as the No. 1 atom and No. 2N + 3 atom is the same as the No. 0 atom. This 
formulation is for the movement of two spin-paired (excited or activated 
by external electric potential) electrons in a conjugate n bond. The movement 
is similar to exciton propagation [37-40] with momentum kh  = 2nA t ,~  
(2N + 3)r = Atz /R ,  where R is the radius of the circle. The resonance integral [41] 
U between the two neighboring excited pairs will give the interaction energy for the 
movement across the double well potential [31, 32] of an anti-symmetric vibration 
(Fig. 5). 

U = (~P*(2n) lHl~*(2n + 2)). (10) 

Such an antisymmetric vibration (Q) will cooperate with the bond movement 
across the nearest-neighbors. This is because the stretching vibration on the left 
creates longer bond distances and higher n-bond energies thus discouraging the 
paired n electron from staying at this particular site. At the same time the 
contracting vibration on the right creates a shorter bond distance and lower energy 
due to more nuclear attraction which favors the n-electron pair to move over here 
to form a double bond. Such energy lowering of the doubly degenerate (resonant) 
nearest-neighbor conjugate n-bonds is of course similar to Peierls' distortion. Such 
electron-vibration coupling is weaker than electron-resonance and will preserve 
left-right identity. As a result the lower potential energy curve has a double 
minimum (at left and right) and a potential barrier V in between. If the individual 
vibration at the left or right has force constant f, the barrier without left-right 
coupling will be 1/2fQ2o. The coupling matrix element U will lower the barrier, but 

2 2 the stabilization energy [U] / 2 f Q o  at the minimum will deepen the barrier [36] 
giving the expression 

[U[ 
V = f Q g  - IUI 2 + ~ = AEo, (11) 

In the 1976 paper of Chiu and Wang [31], this kind of barrier for pair- 
wise charge transfer from C = C - C  to C - C = C  was estimated to be 
A Ec = 0.20 × 10-x3 erg ~ 145 ° K. This early estimate turns out to be comparable 
to the current high Tc number when the barrier is considered to be the supercon- 
ductivity gap. 
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If the classical frequency of left/right vibrational energy levels is Vo, the splitting 
A Eo of the two degenerate left/right vibrational energy levels Eo will be larger for 
smaller V, 

Such splitting to create a lower energy level may also be compared with the 
formation of the superconductivity gap due to electron-phonon interaction. The 
time for tunneling [42, 43] for this case to is inversely proportional to the splitting 
energy AEo, to = h/2AEo. There will be a cooperative effect if the electron 
tunneling time matches the period of vibration with a given vibrational quanta. If 
the two degenerate vibrational states at the two sides are higher in energy level E,, 
the splitting of these two degenerate levels will result in large energy level difference 
(Fig. 5) and faster time (smaller t, = h/2AEo) for tunneling. Such raising of the 
vibrational level may be due to the raise of temperature or the application of 
external electric field. Even though there is a faster moment of the higher (degen- 
erate) vibrational levels, but the (paired) electron (hole) density at these higher 
vibrational levels are less localized and less motion from one local side to another 
side. Eventually, when the higher vibrational level reaches the top of the barrier of 
double-well potential, the electron (hole) density is delocalized evenly on both sides 
with the disintegration of the pairing of charges. Therefore, there is no pairwise 
charge conductivity as well as no vibrational tunneling (of localized vibrations). 
For high To superconductors with existing bonds in quadruple CuO2 structure 
(Fig. 2) the force constant is large and the system is more resistant to thermal 
perturbation to raise it above the zero-point energy level. For lower Tc supercon- 
ductors the force constant, coming essentially from the instantaneous potential 
curve due to second-order electron-phonon interaction, is small and therefore will 
be more susceptible to thermal perturbation which breaks down the phonon- 
coupled Cooper pairs. 

The double-well potential for the movement of electrons (or holes) across the 
nearest-neighbor will require near-neighbor antisymmetric vibration. For N' 
( = even) atoms this antisymmetric vibration correspond to A = N'/2 in Eq. (5b). 
This will mix the "Covalon" running wave with mixing coefficient as follows [44]: 

To have longer-range order and coherence for the movement of bonds we will need 
antisymmetric vibrations with bonds further away. For example A = N'/4 will 
correspond to next-to-nearest-neighbor antisymmetric vibration and A = N'/8 will 
correspond to next-to-next nearest-neighbor antisymmetric vibration, etc. Each 
will have a double well potential that correspond to the movement of bonds (Fig. 5) 
further and further away. In addition to the alternating conjugate double bonding 
structure, there are also other (valence bond) resonance structures that may be 
considered along with different antisymmetric vibrations. The vibronic mixing to 
parallel the two-electron Cooper pair will consist of the sum over (A of) all of the 
vibronic perturbation mixing of the Covalon running waves. 
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The aa ' s  are expected to be smaller for larger separation of the bonds because of the 
smaller resonance integrals (Eq. (10)). The movement of the excited electron pair in 
4"  (Fig. 6a, b) is very similar to the wave propagation of Bisolitons [35, 36]. The 
double bonds on the left of cb* is slanted one way while the double bonds on the 
right of 4"  is slanted in another way. This is like taking the crowded double bond 
4" as the "wall" or as the "kink". Because our approach involves linear combina- 
tion of different valence bonding structures, it represents a different resonant 
valence bond theory from that of Anderson [45, 46] which does not specify exactly 
the molecular bonding structure. This also represents a different vibronic interac- 
tions in terms of position space. It differs from vibronic mixing (electron-phonon 
interaction) of two (spin T~ paired) electrons with opposite momentum k with 
another set of opposite momentum k'  in a Boson state of BCS theory: 

(rx r2) = ~ akOk(1)]'0-k(2) $. (15) 
k 

This BCS theory has the overall antisymmetric (A) ground state: 

~ ( r l r  2 . . .  r2zv+4 ) = A ¢ ( r ,  r 2 ) ~ ( r 3 r 4 )  . . .  ¢(r2N+ar2N+4), (16) 

which differs from our Covalon state for the movement of bonding electrons 
(Eqs. (9) and (14)). 

4. Summary and discussions of further work 

Based on non-stoichiometry of doping and the presence of holes (and electrons) we 
have proposed a periodic structure with quadruple CuO2 layer (Fig. 1) and have 
used this to formulate a position space approach of understanding the dynamics 
and mechanism of high T~ superconductors. This involves the mechanism of 
pairing of spins due to vibronic distortion of the structure, the pairwise charge 
transfer and its cooperation with antisymmetric vibration with a double well 
potential. It also involves the long-range order and coherence due to antisymmetric 
vibration at large separation corresponding to the charge transfer between these 
widely separated valence bonds. 

Our approach represent a different view of resonance valence bond theory, 
a different position-space approach to the BCS principle of (free) electron-phonon 
interaction and a different structural view from Bisoliton movement and a new 
view of double-well potential in pairwise charge transfer to tight binding molecular 
crystals which may account for high To superconductivity [-2, 3, 57, 48]. Based on 
our formulation, the types of numerical calculations that can be performed are as 
follows: 

1. Calculation of the vibronic mixing coefficients (Eqs. (4) and (13)) and determina- 
tion of when the coefficients diminish at how far away of the bond transfer and at 
how distant (instead of the nearest neighbor vibration) the cooperative antisym- 
metric vibration. This will lead to a determination of the coherence range. 
2. Calculate the resonance integral (Eq. (10)), the potential barrier (Eq. (11)) as well 
as the vibrational frequency for the double-well potential. Compare the double well 
for high Tc compounds versus low To compounds. 
3. Calculate the vibronic lowering of energy (Eqs. (1), (4) and (13)) for the ground 
state superconducting gap. 
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4. Find the splitting of the double well and its contribution to the energy gap and 
find the tunneling probability. 
5. Search for other periodic structures (Fig. 2), similar to finding different reson- 
ance valence bonding structures of Eq. (9a). These numerical calculations are now 
in progress. 
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